skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marron, Emily C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Segmenting autophagic bodies in yeast TEM images is a key technique for measuring changes in autophagosome size and number in order to better understand macroautophagy/autophagy. Manual segmentation of these images can be very time consuming, particularly because hundreds of images are needed for accurate measurements. Here we describe a validated Cellpose 2.0 model that can segment these images with accuracy comparable to that of human experts. This model can be used for fully automated segmentation, eliminating the need for manual body outlining, or for model-assisted segmentation, which allows human oversight but is still five times as fast as the current manual method. The model is specific to segmentation of autophagic bodies in yeast TEM images, but researchers working in other systems can use a similar process to generate their own Cellpose 2.0 models to attempt automated segmentations. Our model and instructions for its use are presented here for the autophagy community. 
    more » « less